Web Application Tools for Statistics Using R and Shiny

Rikkyo University

June 16, 2016

Jimmy Doi jdoi@calpoly.edu

California Polytechnic State University San Luis Obispo Department of Statistics

Based on the following work:

Web Application Teaching Tools for Statistics Using R and Shiny*

Jimmy Doi¹, Gail Potter^{1,2}, Jimmy Wong^{1,3}, Irvin Alcaraz^{1,4}, and Peter Chi^{1,5}

¹Department of Statistics, California Polytechnic State University, San Luis Obispo ²The EMMES Corporation (Rockville, MD) ³Food and Drug Administration, Center for Drug Evaluation and Research ⁴OpenX ⁵Department of Mathematics and Computer Science, Ursinus College

^{*(}March 2016) Technology Innovations in Statistics Education, 9(1)

- There is a large collection of applet tools on the web
 - Rossman/Chance Applet Collection
 - Statistics Online Computational Resource
- Eventually an instructor/researcher can come across a problem in finding an existing applet to perfectly suit his/her needs
- One can try to customize an existing applet ...
 - this requires access to original source code (not always available)
 - even if available, customization requires fluency in source code language
- If the desired functionality of application is novel (e.g., based on newly proposed research), existing applets are most likely unsuitable

- In these situations the instructor/researcher is left to consider building his/her own web-based tool applet
- Not a trivial task can require knowledge in
 - Java, Javascript
 - HTML
 - CSS
 - PHP
 - Server-side management
- This burden can be a sufficient obstacle, keeping an instructor/researcher from creating applets

- An alternative method to create web-based tool applications is provided by Shiny a web application framework for R
- It is not uncommon for instructors/researchers to build their own tools via algorithms written in R
- It is not difficult to convert existing R algorithms into Shiny web applications known simply as 'Shiny apps'
- With Shiny, one can build applications that are interactive, dynamic, user-friendly, visually appealing, and, with similar functionality to Java/Javascript applets; the only requirement is some familiarity in **R**

- Introductory Statistics Course
- Topic: Behavior of a simple stochastic process
 - Binary outcomes (H or T) where P(H) = P(T) = 0.5
- Popular class activity coin flipping (find the fake sequence)

Sequence A _____

- Introductory Statistics Course
- Topic: Behavior of a simple stochastic process
 - Binary outcomes (H or T) where P(H) = P(T) = 0.5
- Popular class activity coin flipping (find the fake sequence)

Sequence A _____

- Tried to find an applet that simulated coin flips and allowed user to identify head/tail runs of a particular length
- No such applet could be found
- I made two R functions to accomplish this task
 - flip.gen() simulates the outcomes of a fair coin flipped a given number of times and determines run lengths
 - plot.flips() displays the simulation outcomes
- In-class presentation using the R console and these functions
 - Set n = 100, show randomizations, highlight various run lengths
 - Set n = 200, show randomizations, highlight various run lengths

'Traditional Method' (working from the console) – disadvantages:

- Must work from the console
- Awkward pauses and choppy (delays can detract from the presentation content)
- Difficulties arise when having others compile your R code

Alternative Presentation Method using Shiny

• Longest Run of Heads or Tails App

Presentation with Shiny – advantages:

- A more fluid presentation
 - Eliminates the awkward pauses no need to show console
 - All adjustments done within the app itself by moving sliders/clicking buttons
 - Updates are virtually instantaneous
- Improved accessibility
 - Users can access the app outside of the brief exposure during the presentation
 - No need for users to work with R directly (avoiding many potential problems) just launch a web browser
- A means to convert existing R algorithms into web-applications
 - Shiny can facilitate development of new web-based tools or applications in a very feasible manner
 - Helpful when introducing concepts not in the standard curriculum or are based on recent research

Shiny App Teaching Tools Collection

- Currently our Shiny App Teaching Tools Collection has 18 apps
 - Wide range of topics coin flipping, random variable generator, hierarchical models, ...
 - Just about every type of Shiny layout and widget can be found in our apps
- Cal Poly Shiny Site: www.statistics.calpoly.edu/shiny
- All Shiny source code available at: gist.github.com/calpolystat

App #	Author	App Name
1	Alcaraz	Correlation and Regression Game
2		Multiple Regression Visualization
3		Probability Distribution Viewer
4	Chi	Gambler's Ruin
5		Random Variable Generation
6	Doi	Length/Coverage Optimal Confidence Intervals
7		Benford's Law: Sequences
8		Benford's Law: Data Examples
9		Chaos Game: Two Dimensions
10		Chaos Game: Three Dimensions
11		Longest Run of Heads or Tails
12	Potter	Testing Violation of the Constant Variance Condition for ANOVA
13		Maximum Likelihood Estimation for the Binomial Distribution
14		Sampling Distributions of Various Statistics
15	Wong	t-test with diagnostics
16		Performance of the Wilcoxon-Mann-Whitney Test vs. t-test
17		Heaped Distribution Estimation
18		Hierarchical Models

- Length/Coverage Optimal (LCO) Confidence Intervals
- Benford's Law: Data Examples
- Multiple Regression Visualization

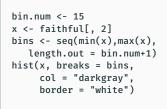
Shiny app examples

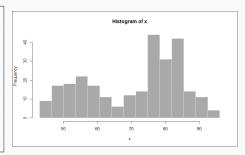
Length/Coverage Optimal (LCO) Confidence Intervals

Schilling, M., and Doi, J. (2014) "A Coverage Probability Approach to Finding an Optimal Binomial Confidence Procedure". The American Statistician, 68, 133–145

- Statistical research projects often involve the creation of novel computational algorithms (e.g., written in R)
- Journal publications based on such research often include references to these algorithms
 - Code attached in Appendix section
 - Code location specified by URL citation
 - Include in publication: "Please contact author for code."
- Problem: General user will not go to the trouble to access the computational algorithms from your research.
- If the code was converted into a Shiny app, and app's URL is cited in the paper/website, you will reach a greater audience.
 - LCO Shiny app completed shortly after paper publication, its URL was mentioned in our response to "Letter to the Editor"

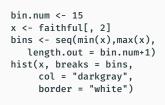
- Length/Coverage Optimal (LCO) Confidence Intervals
- Benford's Law: Data Examples [uses webscraping]
- Multiple Regression Visualization

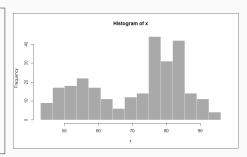

Shiny **basics**

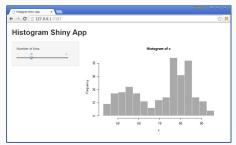

- A Shiny app is comprised of two files: UI.R and SERVER.R*
 - UI.R instructions for the layout and appearance of the app
 - SERVER.R (usually) the app's computational components
- The dynamic and interactive nature of a Shiny app is made possible through the ongoing interplay that occurs between UI.R and SERVER.R.

^{*}As of version 0.10.2, Shiny allows for single-file applications where the components of UI.R and SERVER.R can be stored in one file called APP.R.

Shiny basics: HISTOGRAM.R


HTSTOGRAM, R

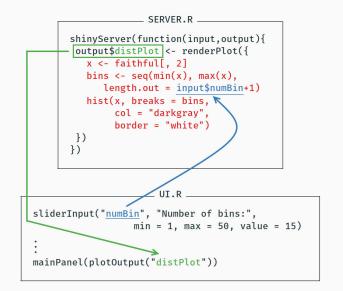




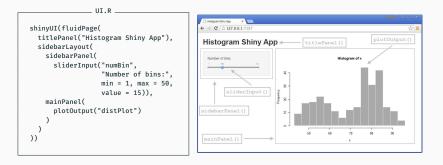
Shiny basics: HISTOGRAM.R

HTSTOGRAM, R

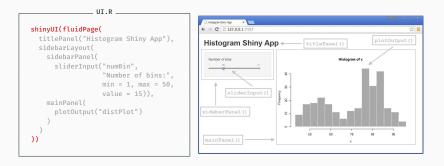
Shiny **basics:** SERVER.R and UI.R

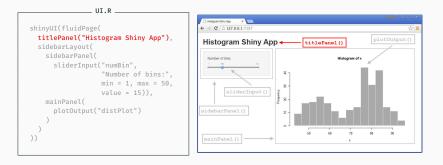

```
HTSTOGRAM, R
                                                  SFRVFR, R
                                   shinyServer(function(input,output){
                                    output$distPlot <- renderPlot({</pre>
bin.num <- 15
                                      x <- faithful[, 2]
x <- faithful[, 2]
bins <- seq(min(x),max(x),</pre>
                                      bins <- seq(min(x), max(x),</pre>
   length.out = bin.num+1)
                                         length.out = input$numBin+1)
hist(x, breaks = bins,
                                      hist(x, breaks = bins,
     col = "darkgray",
                                           col = "darkgray",
     border = "white")
                                           border = "white")
                                   })
                                   })
```

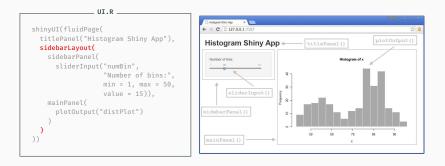
Shiny basics: SERVER.R and UI.R

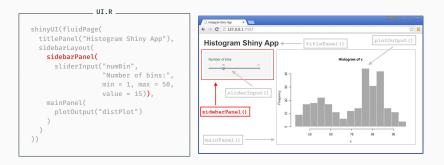


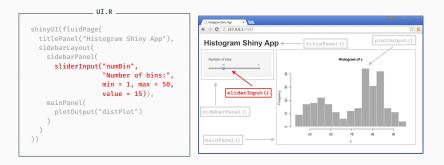

```
UI.R.
```

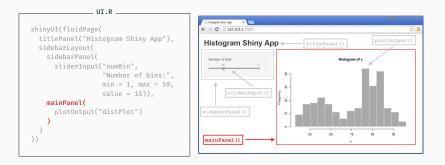

Shiny basics: SERVER.R and UI.R

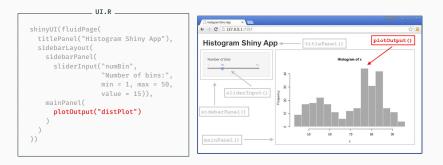

Shiny **basics**: UI.R


Shiny basics: UI.R - shinyUI(fluidPage())


Shiny basics: UI.R - titlePanel()


Shiny basics: UI.R - sidebarLayout()


Shiny basics: UI.R - sidebarPanel()


Shiny basics: UI.R - sliderInput()

Shiny basics: UI.R - mainPanel()

Shiny basics: UI.R - plotOutput()

- A widget is a web element that users can interact with
- Each widget is an input device that sends feedback to the Shiny app
- shiny.rstudio.com/gallery/widget-gallery.html

Launching and deploying Shiny apps

Launching apps (locally accessible on a PC)

- Use the RStudio software (works very well with Shiny)
 - Edit UI.R and SERVER.R
 - Use CONTROL-SHIFT-ENTER to launch app
 - No need to close app window to re-edit/re-launch
- Store your files at a cloud-based service like Dropbox
 - allows user to revert back to a code version between backups

Launching and deploying Shiny apps

Deploying apps (publicly accessible via a server) – e.g., Benford App

- RStudio server at shinyapps.io
 - · Choose from several accounts based on tiered pricing system
 - Free account available but with restrictions
- Open Shiny Server and Shiny Server Pro* (both for Linux servers) $* (annual fee starts at $10,000 USD \rightarrow 約107万円)$
- Cal Poly Shiny Server Pro (100 concurrent users)* *(Our equivalent annual fee: \$25,000 USD → 約268万円)
- RStudio Academic Pricing Policy (Research \rightarrow 50% discount, Teaching \rightarrow 100% discount)
- I am happy to work with your IT staff to discuss install process

RStudio Academic Pricing Policy

Stat 418, Analysis of Cross-Classified Data Winter 2016, Cal Poly State University San Luis Obispo	
Class Info:	Section 01, TR 2:10 - 4:00pm (Bldg 14, Room 247)
Instructor:	Dr. Jimmy A. Doi, Department of Statistics Email: jdoi@calpoly.edu ← best way to reach me
Office Hours:	MTWR 12:10 – 1:00pm (and by appointment)
Office Info:	Faculty Office Building East 25 - 108
Text:	An Introduction to Categorical Data Analysis (SECOND edition) by Alan Agresti, 2007
Computer Access:	 We will use the following software – SAS, R, RStudio, Shiny Apps SAS is available on many on-campus computers Download R at cran.r-project.org Download RStudio at www.rstudio.com/products/rstudio/download URL for all Shiny Apps will be announced in class

Shiny Server usage worldwide at academic institutions:

- Hundreds of universities worldwide are using Shiny Server
- Currently several universities in Japan are using Shiny Server

Example: Scenarios Network for Alaska and Arctic Planning (SNAP)

SNAP is part of the International Arctic Research Center at the University of Alaska Fairbanks.

• Daily Precipitation for Alaska

Shiny can be useful for any department/group at Rikkyo. For example:

- Center for Statistics and Information
- College of Economics
- College of Business

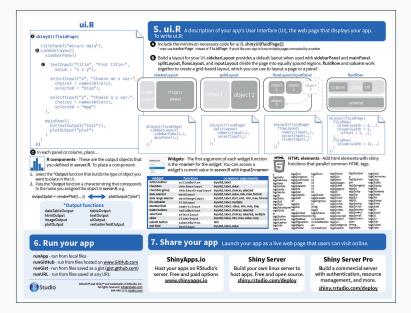
shiny.rikkyo.ac.jp/CSI shiny.rikkyo.ac.jp/Econ shiny.rikkyo.ac.jp/Bus shiny.rikkyo.ac.jp/yamaguchi shiny.rikkyo.ac.jp/ohashi shiny.rikkyo.ac.jp/tanno

Shiny resources


Resources

- A great starting point: The Shiny Tutorial at RStudio: shiny.rstudio.com/tutorial
- A large gallery (over 150) of various Shiny apps:

www.showmeshiny.com


- Using Shiny in R Markdown: rmarkdown.rstudio.com/authoring_shiny.html
- Reactive Programming in Shiny: shiny.rstudio.com/articles/reactivity-overview.html
- Adding Google Analytics to Shiny: shiny.rstudio.com/articles/google-analytics.html
- Shiny Cheat Sheet: www.rstudio.com/resources/cheatsheets

Resources: Shiny Cheat Sheet

26

Resources: Shiny Cheat Sheet

Resources: dplyr and tidyr Cheat Sheet (日本語)

Resources: dplyr and tidyr Cheat Sheet (日本語)

 \rightarrow

RStudio" is a trademark of RStudio, Inc. • <u>ccare</u>stadio • <u>infolicitatio.com</u> • 8464481212 • <u>ctadio.com</u> Translated by Tomo Masuda // Otomo_makes Learn more with browserlignettes(package = o,"dphyr", "tidyr")) + dphyr 0.4.0+ tidyr 0.2.0 + Updated: 1/15

x1 x2 x1 x

bind cols(y, z)

yに、zを新しい列として追加 注意:行は位置ペースで対応づけ

- Our paper can be downloaded from TISE or from my website statweb.calpoly.edu/jdoi/web/research/index.htm
- Appendix A from the paper: Brief tutorial on how to install and get started in Shiny

Resources

A. Shiny Basics

A.1. Getting Started

The version of Shiny that we used is 0.11.1 which requires R version 3.0.0 or higher. R version updates are available at cran.r-project.org.

At the R console submit the following commands to install Shiny:

```
install.packages("shiny")
library(shiny)
```

To confirm successful installation, submit the following command to launch one of the built-in Shiny example apps:

```
runExample("01_hello")
```

- Our paper can be downloaded from TISE or from my website statweb.calpoly.edu/jdoi/web/research/index.htm
- Appendix A from the paper: Brief tutorial on how to install and get started in **Shiny**
- Appendix B from the paper: Some teaching materials based on our **Shiny** apps
- Additional resources can be found in the paper

Summary

- Developing Shiny apps very feasible
 - Required R background \neq Master R Developer Level
- Start with The Shiny Tutorial at RStudio then **SLOWLY** convert a working R algorithm into an app
- Open a free account at shinyapps.io and deploy your first app
- Open a free account at gist.github.com or at github.com to store your library of source code
- Visit our Cal Poly Shiny Site, access our source code, and experiment on your own
- Please do not hesitate to send me questions as you build Shiny apps – I'm very happy to help

Special thanks to ...

• Dr. Kazunori Yamaguchi for inviting me to Rikkyo University

I hope to see you at ICOTS-10, July 2018 in Kyoto.

Email: jdoi@calpoly.edu Web: www.calpoly.edu/~jdoi