統計学教育課程におけるコンピューターの使用

カート・ハインリックス

序論 および 指針

- 統計学、コンピューター利用および社会
- コンピューター利用と統計学教育
 - 学生ユーザー
 - アクセスとインフラの傾向
 - 統計学教育におけるコンピューター役割と進化
- どのように学科課程にテクノロジーを統合するか
 - 使用するソフトウェアのタイプ
 - 教科書

統計の技能は社会にとって重要か?

- データの増加 = ITの最大の課題
 - 回答した会社の47% (ガートナー)
- 「データを収集するのが目標ではなく、そこから洞察を得ることである」(フォレスターリサーチ、デーブ・フランクランド)
- 「統計学は、データから見識を得る学問である」 (チャンス、2002)
- 分析能力を持つ企業は市場一般よりも業績が良い。
 - ↑アナリティック・インベストメント社はS&P500と比べ64%良い業績をあげた。(アクセンチュア)

分析学を使って成功する

SAS, 高等ビジネス分析学課程

1			
	決定最強化	最良の決定は何か?	高等分析
	予測モデリング	次は何が起きるのか?	
立性	発生予測	この傾向が続いたらどうするのか?	
競合優位性	基本的統計分析	基本分析	
競	早期警戒による報告	_	
	ダイナミック(動的)報告	実際に問題があるのはどこか?	
	臨時目的の報告	報告	
	基本的な報告	何が起きたのか?	
·	データ	▶ 情報 → 知能	
	決定の補助	→ 決定の手引き	

統計の技能は社会にとって重要か?

- データの増加 = ITの最大の課題
 - 回答した会社の47% (ガートナー)
- ■「データを収集するのが目標ではなく、そこから洞察を得るこ とである」(フォレスターリサーチ、デーブ・フランクランド)
- 分析能力を持つ企業は市場一般よりも業績が良い。
 - ↑アナリティック・インベストメント社はS&P500と比べ64%業績が良 かった (アクセンチュア)
- 2018年までに分析能力を持つ人材の不足が深刻化する
 - 深い分析能力を持った人材が50%不足(統計学修士、博士)
 - 決定を下すためにデータを用いる管理職は1,500万人 (マッキンゼー・グローバル・インスティテュート)

McKinsey Global Institute


Abwart 1

膨大なデータ:イノベーション、 競争そして生産性における次 の最前線

添付図表4

2018年までに、米国内における高い分析能力を持つ人材の需要は、その供給を50~60%上回る可能性がある

2018年までの高い分析能力をもつ人材の需要と供給(千人)

1 その他に供給に影響を及ぼしたのは、人員減少(一)、移民(+)、解雇した下位分析能力をもと人材の再雇用などである。 出典:米国労働統計局:米国国勢調査:ダンアンドブラッドストリート;企業インタビュー;マッキンゼー・グローバル・インスティテュート分析

統計学課程は二種類の聴講者を支える

- 1. サービスコースへの導入(95%の統計課程の登録)
 - 種類(一般、ビジネス、工学、生物学、心理学)
 - 課題(難しい取組み)(学期制、大規模クラス、因習的なシラバス(概 要))
 - 非常に大きなコースでは、助教などが教えることが多い
 - コンピューター演算: 使いやすさ(JMP、エクセル)

入門的「サービス」コース

**************************************	生物情報学 5K 4/G 生存率分析 5K - 4/G	ノンパラメトリック 統計学 5K 4/G 実験デザイン 5K - 4/G	データマイニング 10K 4/G 	多変量 5K 4/G 分類別 データ分析 5K - 4/G	信頼性 5K 4/G 第験デザイン 10K - 4/G
		回帰/線形 モデル 統計的手法 50K - 4/G	- 調査方法論 60K - 4/G	統計の品質管理 10K - 4/G	
入門	生物統計学 60K 4/G 生命科学/公衆衛生	一般/入門 統計学 400K-AP/2/4 統計学/数学	ビジネス & 経済 統計学 250K-4/G ビジネス/経済	心理学統計 160 4/G 社会科学	エンジニアリン グ統計 75K - 4G

統計学課程は二種類の聴講者を支える

- 1. 入門サービスコース(95%の統計課程の登録)
 - 種類(一般、ビジネス、工学、生物学、心理学)
 - 課題(難しい取組み)(学期制、大規模クラス、因習的なシラバス(概
 - 非常に大きなコースでは、下位の教授が教えることが多い
 - コンピューター演算: 使いやすさ(JMP、エクセル)
- 2. 先進課程 (米国内の統計学を受講する学生の5% 以下)
 - 少人数のクラスを教授が最新の研究を踏まえ教えている
 - コンピューターを使った演算:プログラミング (SAS、R)

入門的「サービス」コース

→	生物情報学 5K 4/G 4/G 生存率分析 5K - 4/G	ノンパラメトリック 統計学 5K 4/G 実験デザイン 5K - 4/G	データマイニング 10K 4/G 予測&時系列 5K - 4/G	多変量 5K 4/G 分類別 データ分析 5K - 4/G	信頼性 5K 4/G 実験デザイン 10K - 4/G
入門 —————	回帰/線形 モデル 統計的手法 50K - 4/G 生物統計学 - 般/入門 統計学 60K 400K-AP/2/4 250K-4/G			調査方法論 60K - 4/G 心理学統計 160	統計の品質管理 10K - 4/G エンジニアリング 統計 75K - 4G
	4/G 生命科学/公衆衛生	統計学/数学	ビジネス/経済	4/G 社会科学	工学

コンピューターへのアクセスとクラスでの利用

- 米国の教室の97%に一台以上のコンピューターがある
- 5人に1台の割合 (K-12、2011年米国教育省統計)
- 家庭におけるテクノロジーへのアクセス
- 統計学サービスコースでのコンピューター利用の範囲
 - 研究室や教室内での授業における利用
 - グループワークおよびチームプロジェクトでの利用
 - 生徒個人のノートパソコン

コンピューター利用と統計学教育

- コンピューターが統計教育を変えている
 - 以前の教え方
 - »人工的 >実際のデータ、テクニック中心 > データ中心
 - »「計算の自動化は可能でそうなっていくべきであるように、図解も自動化 が可能であり、そうなっていくべきである。」 (ムーア、1992年)
 - 2002年: 50% が授業でコンピューターを使用 (ガーフィールド)
 - 2011年: 76% (米国)が現在導入中、通常使用、常に使用 96%が何らか使用を報告している (ハサード、2011年)

「コンピューターによる統計の目的は、数字ではなく、洞察を得ることである」(パーゼン、1998年)

コンピューター利用と統計学教育

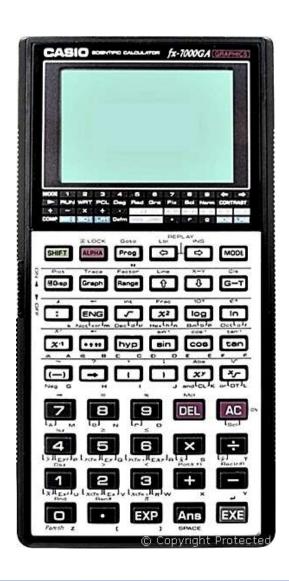
- コンピューターが統計教育を変えている
 - 以前の教え方
 - »人工的 >実際のデータ、テクニック中心 > データ中心
 - »「計算の自動化は可能でそうなっていくべきであるように、図解も自動化 が可能であり、そうなっていくべきである。」 (ムーア、1992年)
 - 以前に教えていたこと
 - » ブートストラッピング、データの可視化、データ管理
 - »「教えられた内容は、計算できることによって、形になるのである」 (コッブ、2007年)

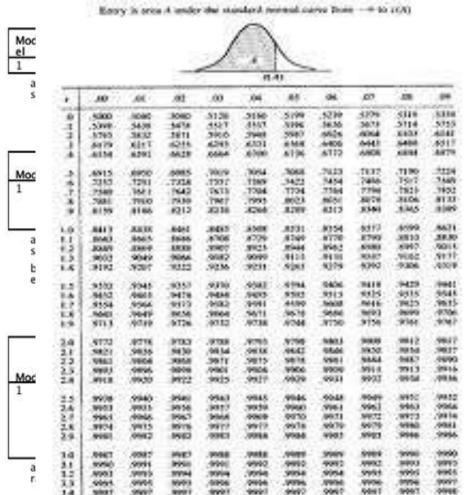
従来型の制約とコースの特質

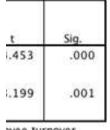
制約

- キャノンについての前提
- 学科に根ざした必須科目(心理学、工学、ビジネス等)
- 14週間
- 生徒の数学と科目領域の履修歴
- 演算テクノロジーの使用可能性:計算尺、計算機、コンピューター、一覧表(z,t,F...)、アップレット
- 重要な実際データ(最近までかなり制限されていた) の入手やアクセスの可能性
- クラスの規模および課題の管理

コースおよび教科書の特徴

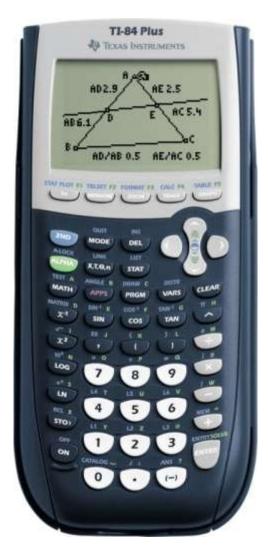

- 小さい標本および小さめの標本(n<20 および 30<n<100)
- 人為的に作成されたデータおよび非無作為標本
- 計算に焦点をあてた指導
- 割当てを円滑にするための概算に焦点
- 生徒は試験で試されることが多い(数値の結果を求める)「能力」を示す。
- 「過程」に重点が置かれている
- 有意性の検定結果の解釈


計算能力に制約されない統計学入門、カーバー、2011年



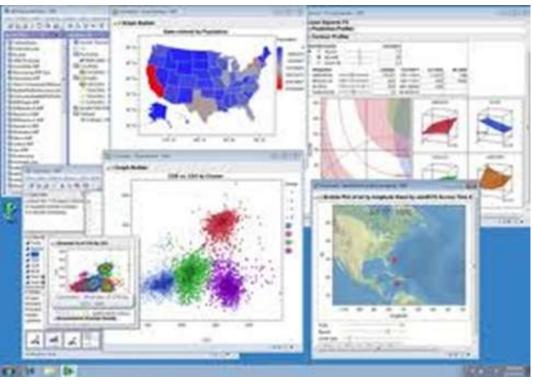
ずっと昔のテクノロジーの役割

S output is y clear once ve gotten used , though not mera-ready." natting is e by template; cing is automatic often problematic.



yee turnover

比較的現在に近い過去におけるテクノロジーの役割

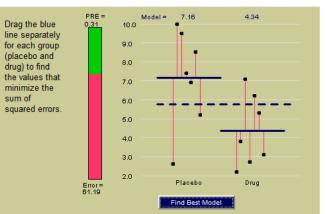


現在および将来におけるテクノロジーの役割

統計学におけるコンピューター利用の目標と利点

- コンピューターは、コースにおいて興味深いことを実施できるようにしてくれる
- 目標は、以下を改善すること
 - データ、調査および発見への直接関与
 - » 積極的学習: 91% の生徒が、講義よりも活動からの方が学びやすいと感じている。 (オーガスト、2002年)
 - 動機づけ、実際的、実践的そして楽しく
 - » 実際のデータは収集、入手、あるいはシミュレーションが可能である
 - » 72% の教授が コンピューターを使うことでその科目を面白くすることができると感じている。 (ハッサード、2011年)
 - 問題解決能力、コミュニケーション能力を発達させる
 - » プロジェクト&報告(リポート)

コンピューターを利用した統計を、コースにどのよ うに取り入れるか


- データの分析および可視化
 - 76% が通常あるいは常に使用している

(ハッサード、2011年)

- コンセプトの学習
 - コンセプトを視覚的に伝える
- その他の利用
 - E-テキストブック、ウェブ・ポータル、クリッカー、コース管理

JMP (統計ソフトウェア)デモ

- EDA(探索的データ分析)、ダイナミックなグラフ作成、可視化
- デモコンセプトツール

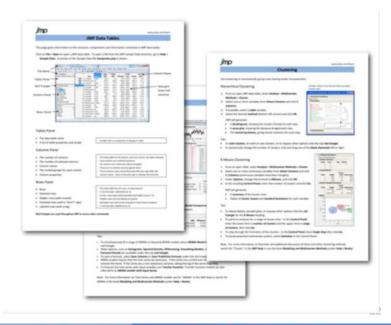
コンピューターの使用は、コースへのプラスまたは能率化につながるか?

出:除外する事ができる項目

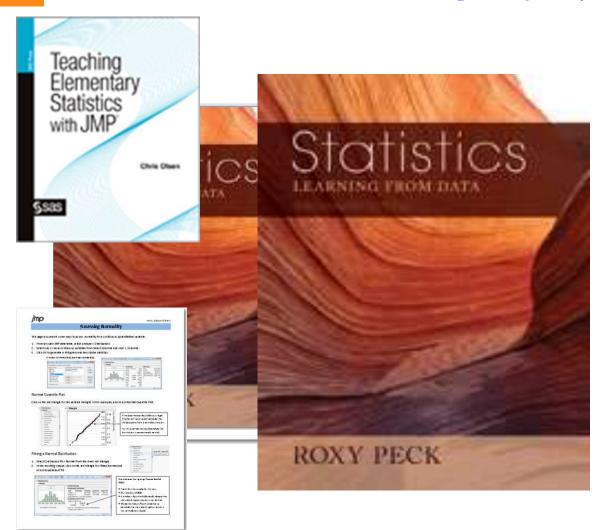
- 小さなデータベースを用いた手計算の大部分
- 偽データを用いたソフトウェアベースの計算全部
- ヒストグラム ビンズの定義づけ
- 初等確率の大部分
- t、z、F テーブル等の解釈
- 他の分布への正規近似
- Z(信頼)区間と有意差検定

入:旧「上級」または「軽視されていた」項目

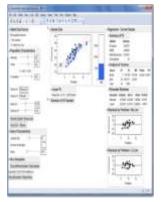
- データ準備、紛失データおよびデータ管理
- ・ 統計調査についての作文
- 再抽出と並べ替え検定
- ・ 標本加重を用いた抽出確率的非SRSデータの分析
- ノンパラメトリック手法
- 非線形モデル
- ・ 多変数モデル


図2: 何が入って、何が出るのか

計算能力に制約されない統計学入門、カーバー、2011年


コンピューターをどのようにコースに取り入れるか:

- GAISE 提案を考慮する。(フランクリン&ガーフィールド、2006年)
- どのように、どの程度利用したいのかを決める。
 - テキストブックの統合:出力、指示、データ分析の実施
 - 補足的教材、資料



テキストブックからの導入多数

Case 9 - Direct Mail: Regression and Forecasting

教室でのタブレット使用

- e-テキストブック、簡単、ダイナミック、(アップル、Kno)
 - 韓国は、20 臆ドルをクラウドベースのe-テキストブックのホストに投資 3年間 (ITプロトコール 2012年)
 - 英国では、コンピューターを使う学生のうち22%がタブレットを使用すると予測
- 大学生-2011年の所有率=7%、2012年=25%
 - 大学生の66%が、タブレットは学習にプラス効果があると考えている
 - ▼ 77% は、学習の質を大きく高めると考えている(ピアソン基金、2012年)

どのツールを選ぶか?

■ GAISEは以下の内容を考慮するよう提案している:

(チャンス、その他 2007年)

- データ入力およびインポートの簡単さ
- 対話方式の能力
- データ/グラフ/数値の間のダイナミックな連結
- 聴衆にとっての使い勝手の良さ
- 生徒にとっての入手可能性、移動可能性

イニシアチブ(率先的行動)と学習の機会

- ジャーナル: Technology Innovations in Statistics Education (統計学教育におけるテクノロジー革新)
- 協議会: USCOTS、ICOTS、JSM
- オンラインセミナー: Causeweb
- *ワークショップ:* JMP ワークショップ、AP統計ワークショップ
- STEM イニシアチブス

Sas POWER TO KNOW.

ありがとうございました