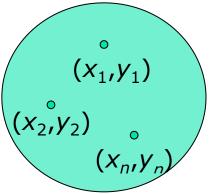
統計学入門第6回

早稲田大学政治経済学部 西郷 浩


本日の目標

- 2次元データの分析
 - ■散布図と相関
 - ■相関を測る尺度
 - ■分割表
 - PC実習

関係の分析(1)

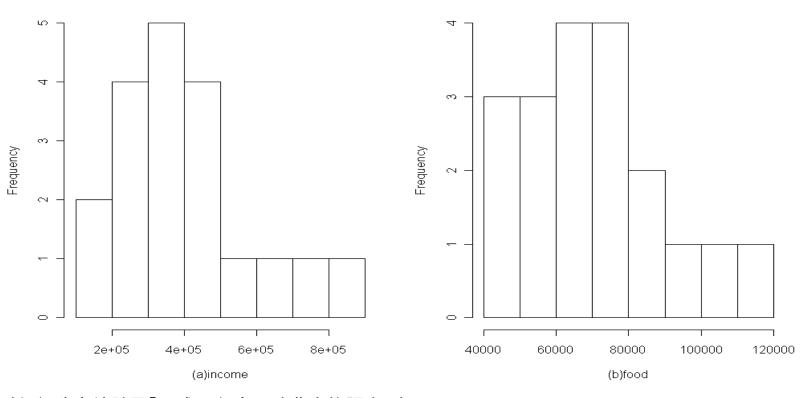
- 2次元データ
 - $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$
- どのように分析すべき?
 - *x* のみ(*y* のみ) → 可能
 - (x, y)を同時に扱う
 - ■関係の分析

集団

関係の分析(2)

- 2次元分布の 表示
 - 散布図:
 - データをx-y 平
 面上に表示
 - 分割表:
 - 多次元度数分 布表

表1:2次元データの要約方法


X	数量	属性
数量	散布図 分割表	分割表
属性	分割表	分割表

- 総務省統計局 「平成21年全国消費実態調査」
 - 表1年間収入階級別一世帯当たり1か月の収入と支出(2人以上世帯のうち勤労者世帯)
 - 可処分所得(x), 食料(y)
- 1次元データとしての分析
 - ヒストグラム

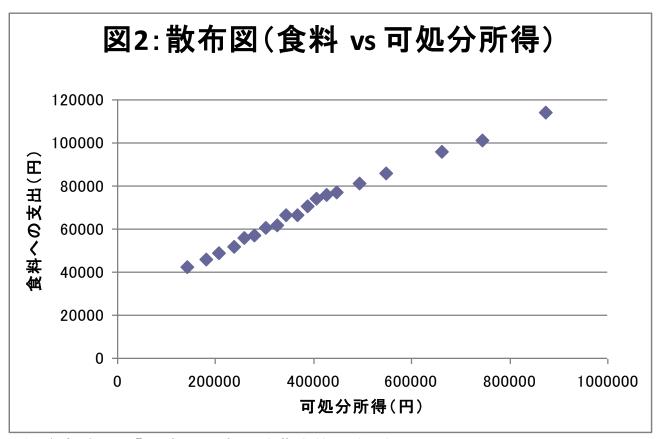

2次元データの例(2)

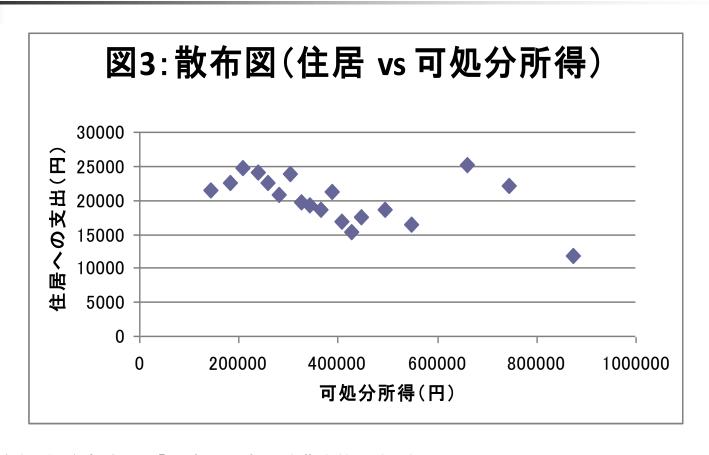
図1: 可処分所得と食料への支出のヒストグラム

資料:総務省統計局「平成21年全国消費実態調査」表1

散布図(1)

資料:総務省統計局「平成21年全国消費実態調査」表1

散布図(2)


- ■散布図から読み取れること
 - ■右上がりの傾向
 - ■可処分所得↑(↓)⇔食料↑(↓)
 - ■直線関係の強弱
 - ほぼ一直線。しかし、厳密には直線でない。

相関(1)

■相関

- ふたつの変数 x, y の直線関係の強さ
 - 強い正の相関:右上がりの直線関係
 - ■弱い正の相関:右上がりの傾向
 - 無相関:はっきりした傾向なし
 - 弱い負の相関:右下がりの傾向
 - 強い負の相関:右下がりの直線関係

相関(2)

資料:総務省統計局「平成21年全国消費実態調査」表1

相関を測定するための尺度(1)

- ■散布図による相関の把握
 - 有効 but 主観的
- ■数値化の必要性
 - 共分散: *S_{xy}*
 - 相関係数: r_{xy}

相関を測定するための尺度(2)

共分散

$$S_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

共分散の符号と相関の符号

$$S_{xv} > 0 \Leftrightarrow$$
 相関が正 \Leftrightarrow 散布図が右上がり

$$S_{xy} \approx 0 \Leftrightarrow$$
 相関ない \Leftrightarrow 明確な傾向なし


$$S_{xv} < 0 \Leftrightarrow$$
 相関が負 \Leftrightarrow 散布図が右下がり

相関を測定するための尺度(3)

- 平均からの偏差 の積の符号
 - ■散布図右上がり
 - プラスが多い
 - *S_{xy}* > 0 となる。 (右下がりのとき はマイナスが多 くなる。)

図4: 共分散の符号

- 可処分所得 xと食料 yとの共分散
 - $S_{xy} = 3,527,329,662$
 - プラスになるので、散布図に見られる右上がりの傾向 と合致している。
 - But 関係の強弱をあらわしているだろうか?
 - たとえば、測定単位を千円単位に変更したら?
 - 測定単位を変更しても、「xとyとの関係自体に変わりはない」 と考えるのが自然である。
- 共分散を「標準化」する必要性
 - 変数の測定単位と無関係な無名数が好ましい。

相関を測定するための尺度(5)

相関係数

$$r_{xy} = \frac{S_{xy}}{S_x S_y} = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2} \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2}}$$
$$= \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^n (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^n (y_i - \overline{y})^2}}$$

1

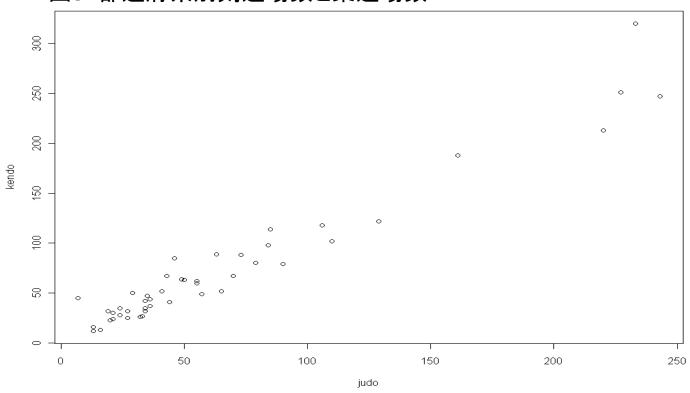
相関を測定するための尺度(6)

■相関係数の性質

- $-1 \leq r_{xy} \leq 1$
 - 強い正の相関⇔ r_{xy} ≒ 1
 - 正の相関⇔ 0 < r_{xy} < 1
 - ■無相関⇔ $r_{xy} = 0$
 - 負の相関⇔ -1 < r_{xv} < 0
 - 強い負の相関⇔ r_{xy} ≒ -1

相関を測定するための尺度(7)

■相関係数の値


- ■可処分所得と食料(図2): *r_{xv}* =0.99
- ■可処分所得と住居(図3): r_{xv} = 0.48

■注意点

- ■直線関係の強弱を示すのみ。
- ■「強い相関関係→因果関係」とは限らず。
 - 因果関係を主張するためには、理論的な背景が必要になる。

相関を測定するための尺度(8)

図5:都道府県別剣道場数と柔道場数

資料:総務省統計研修所編(2011)『第61回日本統計年鑑』表23-15

(住居についての)周辺分布

分割表 (1)

可

住居に関する条件つき分布処分所得を所与としたときの

同時分布(結合分布)

表2: 可処分所得と住居への支出の分割表

表頭

可処分所得 住居への 0万-29.9万 60万-89.9万 30万-59.9万 合計 支出 10千-14.9千 表側 15千-19.9千 8 8 20千-24.9千 6 25千-29.9千 合計 19 6 10

資料:総務省統計局「平成21年全国消費実態調査」表1

19

分割表 (2)

- ■2つの変数の関係
 - 同時分布(結合分布)
 - 条件つき分布
 - 所与(条件)とした変数の値を変化させると、2つの変数の関係がわかる。
- ■相対度数による表示
 - 行和(列和)に対する相対度数。

分割表 (3)

表3:2011年度入学者 学部(X)と性別(Y)の同時分布

(a)度数を表示した分割表

合計 男 女 X 312 政経 708 1020 745 1686 941 文文 合計 2706 1253 1453

(b)行和に対する相対度数

y x	男	女	合計
政経	0.69	0.31	1.00
文文	0.44	0.56	1.00
合計	0.54	0.46	1.00

資料:早稲田大学教務部「統計で見る早稲田大学」2011年度版

分割表 (4)

- ■質的変数どうしの分割表
 - 変数の順序に大小・高低の意味がない場合、「相関」の定義を工夫する必要がある(一般の場合は複雑になる)。
- ■2×2の分割表のための関連係数
 - ■相関係数に対応するもの。
 - ただし、変数の順序に大小・高低の意味がないときには、符号は無意味。

分割表 (5)

表4:2×2の分割表

x	G	Н	行和
Е	a	b	a+b
F	C	d	c+d
列和	a+c	b+d	n

関連係数
$$R = \frac{ad - bc}{\sqrt{(a+c)(b+d)(a+b)(c+d)}}$$

分割表 (6)

表5:人工的な例(R=0 となる)

X	G	Ι	行和
E	4	6	10
F	8	12	20
列和	12	18	30

表6:人工的な例(R=1となる)

x y	G	Н	行和
Е	10	0	10
F	0	20	20
列和	10	20	30

学部・性別データ

$$R = 0.24$$

- ■散布図の作成
- 共分散・相関係数の計算
- 分割表の作成